AOE/ESM 4064 "Engineering Design Optimization™

Optimum Design Concepts

* Methods used for design optimization does not depend on the
field of engineering.
 Broad classification of the optimization
Optimality criteria methods (Indirect methods)
Search methods (direct search methods)

o Optimality criteria are the conditions a function must satisfy at its
minimum point.

o Study of optimality conditions are necessary regardless of the
method of optimization used.
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 Gradient Vector (the vector of first derivatives):

For a function of n variables

f(xq, Xo, . . ., Xp)
of(x) c = Of(x) = of _ gradf = :
Cj = AX 0X

«Geometrically, the gradient vector at point xP is normal to the
tangent plané to the function at that point, and points in the

diréction of maximum increase in the function.
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» Hessian Matrix (the matrix of second derivatives):

For a function of n variables
f(Xq, X, . . . ., Xp)

*Hessian matrix is always a symmetric matrix
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 Taylor Series Expansion:
«for a function with one variable, Taylor series expansion about x°

p 20D .
f(x) = f(Xp)+M(X_Xp)+1—g_T_(_X_2(X_Xp) +R
dx 2 q 2
X
. 2..P
At a small distance d from xP df(x" 1d7f(x") ,2
| distancs f(xP + d) = f(xp)+—7(5(——)d+—-—-—(-§——)d +R

2 dx
ofor a function with n variables

f(x) = f(xP) + Df(xp)T e (x-xPy+ %(x - x'o)T e HXPYe (x=xP) +R

-Chanﬁe in the value of the nyn_ction in moving from xP to a
neighboring point d = x - x"distance away from it

.
Af = f(xP +d) - f(x") = DF(xP) o d+%dT- H(x")e d+R
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e Quadratic Forms and Definite Matrices:

«Quadratic form is a special nonlinear function having only second-
order terms

For example; F(x) = xi + 2x§ + 3x§ +2X Xy + 2XoXq + 2X5Xy
n n
i _1 _ 1T
Representations F(x) = > PijXiXj = 5X Px
i=1j=1

*Every quadratic form can be put into the following form with a
symmetric A matrix

_ LT, 2 LT _ 1
F(x) = 2x Px = 2x AX aij = 2(pij+pji)
*Many matrices can be associated with a quadratic functign, all of
them are asymmetric. There is only one unigue symmetric matrix.

*The symmetric A matrix determines the nature of the quadratic form.
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* For a given value of x a quadratic form F(x) = 1/2 X'AX may be
either positive, negative, or zero

« A quadratic form is called positive definite if X"AX is always
positive except for F(0).

e Itis called negative definite if XTAX < 0 for all X except X = 0.

o If a quadratic form is X"AX = 0 for all X and there exists one
nonzero X (X # 0) with XTAX = 0, then it is called positive
semidefinite.

o If a quadratic form is X"AX < 0 for all X and there exists one
nonzero X (Xz 0) with XTAX = 0, then it is called positive
semidefinite.

A quadratic form which is positive for some vectors x and negative
for others is called indefinite.
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» Check the ei%en\_/alues of the symmetric nxn A matrix associated
with the quadratic form F(x) = 1/2 x'Ax.

*F(X) iIs positive definite if and only if all eigenvalues of
A are strictly positive, i.e. A; >0, 1= 1ton.

*F(x) Is positive semidefinite if and only if all
eigenvalues of A are non-negative, i.e. A;j =20, 1 =1to n.

*F(X) Is negative definite iIf and only if all eigenvalues of
A are strictly negative, i.e. A; <0, 1'=1ton.

*F(x) is negative semidefinite if and only if all
eigenvalues of A are non-positive, i.e. Aj<0,1=1ton.

*F(x) is indefinite if some A; < 0 and some other A; > 0.
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