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AOE/ESM 4084 “Engineering Design Optimization”
Optimum Design Concepts

   • Methods used for design optimization does not depend on the 
field of engineering. 

   • Broad classification of the optimization
           Optimality criteria methods (indirect methods)
           Search methods (direct search methods)

   • Optimality criteria are the conditions a function must satisfy at its 
minimum point. 

   • Study of optimality conditions are necessary regardless of the 
method of optimization used.
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   • Gradient Vector (the vector of first derivatives): 

           

           •Geometrically, the gradient vector at point xp is normal to the 
tangent plane to the function at that point, and points in the 
direction of maximum increase in the function. 
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   • Hessian Matrix (the matrix of second derivatives): 

           •Hessian matrix is always a symmetric matrix
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   • Taylor Series Expansion:
           •for a function with one variable, Taylor series expansion about xp

           •for a function with n variables

           •change in the value of the function in moving from xp to a 
neighboring point d = x - xpdistance away from it
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   • Quadratic Forms and Definite Matrices:
           •Quadratic form is a special nonlinear function having only second-

order terms

           •Every quadratic form can be put into the following form with a 
symmetric A matrix 

           •Many matrices can be associated with a quadratic function, all of 
them are asymmetric. There is only one unique symmetric matrix. 

           •The symmetric A matrix determines the nature of the quadratic form. 
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   • For a given value of x a quadratic form F(x) = 1/2 xTAx may be 

either positive, negative, or zero
           • A quadratic form is called positive definite if xTAx is always 

positive except for F(0). 
           • It is called negative definite if xTAx < 0 for all x except x = 0. 
           • If a quadratic form is xTAx=≥=0 for all x and there exists one 

nonzero x (x=≠=0) with xTAx = 0, then it is called positive 
semidefinite. 

           • If a quadratic form is xTAx=≤ 0 for all x and there exists one 
nonzero x (x≠ 0) with xTAx = 0, then it is called positive 
semidefinite. 

           • A quadratic form which is positive for some vectors x and negative 
for others is called indefinite. 
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   • Check the eigenvalues of the symmetric n×n A matrix associated 
with the quadratic form F(x) = 1/2 xTAx. 

           •F(x) is positive definite if and only if all eigenvalues of 
A are strictly positive, i.e. λi > 0, i = 1 to n. 

           •F(x) is positive semidefinite if and only if all 
eigenvalues of A are non-negative, i.e. λi=≥=0, i = 1 to n.

           •F(x) is negative definite if and only if all eigenvalues of 
A are strictly negative, i.e. λi < 0, i = 1 to n.

           •F(x) is negative semidefinite if and only if all 
eigenvalues of A are non-positive, i.e. λi=≤=0, i = 1 to n.

           •F(x) is indefinite if some λi < 0 and some other λi > 0. 


